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Use MATLAB Debugger

Fuctions Meaning
dbclear Remove breakpoints
dbtype Display file with line numbers
dbstop Set breakpoints for debugging
dbstep Execute next executable line from current breakpoint
dbcont Resume execution
dbstack Function call stack
dbstatus List all breakpoints
dbquit Quit debug mode
dbup Shift current workspace to workspace of caller in debug mode
dbdown Reverse dbup workspace shift
checkcode Check MATLAB code files for possible problems
keyboard Input from keyboard
mlintrpt Run checkcode for file or folder
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Example: buggy.m

Create a file, factorial_buggy.m, that contains these statements

function p = factorial_buggy(n)

p = 0;
for i = 1:n

p = p * n;
end

Issue the dbstop command and run factorial_buggy.

dbstop in factorial_buggy
factorial_buggy(5)
dbstep
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Reference

Debug a MATLAB Program:
https://www.mathworks.com/help/matlab/matlab_prog/
debugging-process-and-features.html
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Consistent Programming Style

A consistent programming style gives your programs a visual
familiarity that helps the reader quickly comprehend the intention of
the code.

A programming style consists of

Visual appearance of the code
Conventions used for variable names
Documentation with comment statement
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Use Visual Layout to Suggest Organization

Indent if ... end and for ... end blocks
Blank lines separate major blocks of code
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Example: Indent code for conditional structures and loops
Conditional structure:

if condition 1 is true
Block 1

elseif condition 2 is true
Block 2

else
Block 3

end

Loop structure:

for i = 1:length(x)
Body of loop

end
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Use Meaningful Variable Names

d = 100;
t = 0.02;
r = d / 2
r2 = r + t;

vs.

diameter = 5;
thickness = 0.02;
radiusIn = diameter / 2;
radiusOut = radiusIn + thickness;
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Follow Programming and Mathematical Convenctions

Variable Names Typeical Usage
i, j, k Array subscripts, loop counters
i, j

√
−1 with complex arithmetic

m, n number of rows (m) and columns (n) in a matrix.
A, B generic matrix
x, y, z generic vectors

Note: Consistency is more important than convention.
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Document code with comment statements

Write comments as you write code, not after
Include a prologue that supports “help”
Assume that the code is going to be used more than once
Comments should be short notes that argument the meaning of
the program statements. Do not parrot the code
Comments alone do not create good code
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Example: Comments at begining of a block

% --- Evaluate curve fit and plot it along with original data
tfit = linspace(mint(t), max(t));
pfit = polyval(c, tfit);
plot(t, p, 'o', tfit, pfit, '--');
xlabel('Temperature (C)');
yalbel('Pressure (MPa)');
legend('Data', 'Polynomial Curve Fit');
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Example: Short comments at side of statement

cp = 2050; % specific heat of solid and liquid paraffin (J/kg/K)
rho = 810; % density of liquid or solid paraffin (kg/m^3)
k = 0.23; % thermal conductivity (W/m/C)
L = 251e3; % latent heat (J/kg)
Tm = 65.4; % melting temperature (C)
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Shortcuts

Windows shortcuts
Press Ctrl + A to select all
Press Ctrl + I to adjust indentation
Press Ctrl + R to comment
Press Ctrl + T to uncomment

macOS shortcuts
Press command + A to select all
Press command + I to adjust indentation
Press command + / to comment
Press command + T to uncomment
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Defensive Programming

Do not assume the input is correct. Check it.
Provide default condition for a if ... elseif ... else
... end construct.
Include optional (verbose) print statement that can be
switched on when trouble occurs
Provide diagnostic error messages
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Preemptive Debugging

Use defensive programming
Break large programming projects into modules

Develop reusable tests for key modules
Good test problems have known answers
Run the tests after changes are made to the module
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