
Lab 07: Debugging and Good Coding Practices

MATH 3341: Introduction to Scientific
Computing Lab

Libao Jin

University of Wyoming

October 16, 2019

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Lab 07: Debugging and Good Coding Practices

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Debugging

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Use MATLAB Debugger

Fuctions Meaning
dbclear Remove breakpoints
dbtype Display file with line numbers
dbstop Set breakpoints for debugging
dbstep Execute next executable line from current breakpoint
dbcont Resume execution
dbstack Function call stack
dbstatus List all breakpoints
dbquit Quit debug mode
dbup Shift current workspace to workspace of caller in debug mode
dbdown Reverse dbup workspace shift
checkcode Check MATLAB code files for possible problems
keyboard Input from keyboard
mlintrpt Run checkcode for file or folder

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Example: buggy.m

Create a file, factorial_buggy.m, that contains these statements

function p = factorial_buggy(n)

p = 0;
for i = 1:n

p = p * n;
end

Issue the dbstop command and run factorial_buggy.

dbstop in factorial_buggy
factorial_buggy(5)
dbstep

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Reference

Debug a MATLAB Program:
https://www.mathworks.com/help/matlab/matlab_prog/
debugging-process-and-features.html

L. Jin MATH 3341

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html


Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Good Code Practices

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Consistent Programming Style

A consistent programming style gives your programs a visual
familiarity that helps the reader quickly comprehend the intention of
the code.

A programming style consists of

Visual appearance of the code
Conventions used for variable names
Documentation with comment statement

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Use Visual Layout to Suggest Organization

Indent if ... end and for ... end blocks
Blank lines separate major blocks of code

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Example: Indent code for conditional structures and loops
Conditional structure:

if condition 1 is true
Block 1

elseif condition 2 is true
Block 2

else
Block 3

end

Loop structure:

for i = 1:length(x)
Body of loop

end

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Use Meaningful Variable Names

d = 100;
t = 0.02;
r = d / 2
r2 = r + t;

vs.

diameter = 5;
thickness = 0.02;
radiusIn = diameter / 2;
radiusOut = radiusIn + thickness;

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Follow Programming and Mathematical Convenctions

Variable Names Typeical Usage
i, j, k Array subscripts, loop counters
i, j

√
−1 with complex arithmetic

m, n number of rows (m) and columns (n) in a matrix.
A, B generic matrix
x, y, z generic vectors

Note: Consistency is more important than convention.

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Document code with comment statements

Write comments as you write code, not after
Include a prologue that supports “help”
Assume that the code is going to be used more than once
Comments should be short notes that argument the meaning of
the program statements. Do not parrot the code
Comments alone do not create good code

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Example: Comments at begining of a block

% --- Evaluate curve fit and plot it along with original data
tfit = linspace(mint(t), max(t));
pfit = polyval(c, tfit);
plot(t, p, 'o', tfit, pfit, '--');
xlabel('Temperature (C)');
yalbel('Pressure (MPa)');
legend('Data', 'Polynomial Curve Fit');

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Example: Short comments at side of statement

cp = 2050; % specific heat of solid and liquid paraffin (J/kg/K)
rho = 810; % density of liquid or solid paraffin (kg/m^3)
k = 0.23; % thermal conductivity (W/m/C)
L = 251e3; % latent heat (J/kg)
Tm = 65.4; % melting temperature (C)

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Shortcuts

Windows shortcuts
Press Ctrl + A to select all
Press Ctrl + I to adjust indentation
Press Ctrl + R to comment
Press Ctrl + T to uncomment

macOS shortcuts
Press command + A to select all
Press command + I to adjust indentation
Press command + / to comment
Press command + T to uncomment

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Defensive Programming

Do not assume the input is correct. Check it.
Provide default condition for a if ... elseif ... else
... end construct.
Include optional (verbose) print statement that can be
switched on when trouble occurs
Provide diagnostic error messages

L. Jin MATH 3341



Lab 07: Debugging and Good Coding Practices Debugging
Good Code Practices

Preemptive Debugging

Use defensive programming
Break large programming projects into modules

Develop reusable tests for key modules
Good test problems have known answers
Run the tests after changes are made to the module

L. Jin MATH 3341


	Lab 07: Debugging and Good Coding Practices
	Debugging
	Good Code Practices


